224 research outputs found

    Statistical Mechanics of Broadcast Channels Using Low Density Parity Check Codes

    Get PDF
    We investigate the use of Gallager's low-density parity-check (LDPC) codes in a broadcast channel, one of the fundamental models in network information theory. Combining linear codes is a standard technique in practical network communication schemes and is known to provide better performance than simple timesharing methods when algebraic codes are used. The statistical physics based analysis shows that the practical performance of the suggested method, achieved by employing the belief propagation algorithm, is superior to that of LDPC based timesharing codes while the best performance, when received transmissions are optimally decoded, is bounded by the timesharing limit.Comment: 14 pages, 4 figure

    Statistical Mechanics of Broadcast Channels Using Low Density Parity Check Codes

    Get PDF
    We investigate the use of Gallager's low-density parity-check (LDPC) codes in a broadcast channel, one of the fundamental models in network information theory. Combining linear codes is a standard technique in practical network communication schemes and is known to provide better performance than simple timesharing methods when algebraic codes are used. The statistical physics based analysis shows that the practical performance of the suggested method, achieved by employing the belief propagation algorithm, is superior to that of LDPC based timesharing codes while the best performance, when received transmissions are optimally decoded, is bounded by the timesharing limit.Comment: 14 pages, 4 figure

    Infections in Biological and Targeted Synthetic Drug Use in Rheumatoid Arthritis:Where do We Stand? A Scoping Review and Meta-analysis

    Get PDF
    Introduction: The advent of biological and targeted synthetic therapies has revolutionized rheumatoid arthritis (RA) treatment. However, this has come at the price of an increased risk of infections. The aim of this study was to present an integrated overview of both serious and non-serious infections, and to identify potential predictors of infection risk in RA patients using biological or targeted synthetic drugs. Methods: We systematically reviewed available literature from PubMed and Cochrane and performed multivariate meta-analysis with meta-regression on the reported infections. Randomized controlled trials and prospective and retrospective observational studies including patient registry studies were analyzed, combined as well as separately. We excluded studies focusing on viral infections only. Results: Infections were not reported in a standardized manner. Meta-analysis showed significant heterogeneity that persisted after forming subgroups by study design and follow-up duration. Overall, the pooled proportions of patients experiencing an infection during a study were 0.30 (95% CI, 0.28–0.33) and 0.03 (95% CI, 0.028–0.035) for any kind of infections or serious infections only, respectively. We found no potential predictors that were consistent across all study subgroups. Conclusions: The high heterogeneity and the inconsistency of potential predictors between studies show that we do not yet have a complete picture of infection risk in RA patients using biological or targeted synthetic drugs. Besides, we found non-serious infections outnumbered serious infections by a factor 10:1, but only a few studies have focused on their occurrence. Future studies should apply a uniform method of infectious adverse event reporting and also focus on non-serious infections and their impact on treatment decisions and quality of life.</p

    The GUINEVERE Project for Accelerator Driven System Physics

    No full text
    paper 9414International audienceThe GUINEVERE project is part of the EUROTRANS Integrated Project of the 6th EURATOM Framework Programme. It is mainly devoted to ADS on-line reactivity monitoring validation, sub-criticality determination and operational procedures (loading, start-up, shut-down, ...) as a follow-up of the MUSE experiments. The project consists in coupling a fast lead core, set-up in the VENUS reactor at SCK*CEN Mol (B), with a GENEPI neutron source under construction by CNRS. To accommodate the accelerator in a vertical coupling configuration, the VENUS building is being heightened. The fast core will be loaded with enriched Uranium and will be moderated and reflected with solid lead (zero power experiment). For the purpose of the experimental programme, the neutron source has to be operated not only in pulsed mode but also in continuous mode to investigate the current-to-flux reactivity indicator in representative conditions of a powerful ADS. In this latter mode it is also required to make short beam interruptions to have access to the neutron population decrease as a function of time: from this spectrum it will be possible to apply different analysis techniques such as "prompt decay" fitting techniques and "source jerk" techniques. Beam interruptions will be repeated at a programmable frequency to improve time spectra statistics. Different sub-criticality levels (keff=0.99, 0.97, 0.95, ...) will be investigated in order to obtain a full set of data points for the final overall validation of the methodology. This paper describes the status of the experimental facility assembling, and the foreseen experimental programme to be started

    Analytical protocols for separation and electron microscopy of nanoparticles interacting with bacterial cells

    Get PDF
    An important step toward understanding interactions between nanoparticles (NPs) and bacteria is the ability to directly observe NPs interacting with bacterial cells. NPbacteria mixtures typical in nanomedicine, however, are not yet amendable for direct imaging in solution. Instead, evidence of NPcell interactions must be preserved in derivative (usually dried) samples to be subsequently revealed in high-resolution images, e.g., via scanning electron microscopy (SEM). Here, this concept is realized for a mixed suspension of model NPs and Staphylococcus aureus bacteria. First, protocols for analyzing the relative colloidal stabilities of NPs and bacteria are developed and validated based on systematic centrifugation and comparison of colony forming unit (CFU) counting and optical density (OD) measurements. Rate-dependence of centrifugation efficiency for each component suggests differential sedimentation at a specific predicted rate as an effective method for removing free NPs after co-incubation; the remaining fraction comprises bacteria with any associated NPs and can be examined, e.g., by SEM, for evidence of NPbacteria interactions. These analytical protocols, validated by systematic control experiments and high-resolution SEM imaging, should be generally applicable for investigating NPbacteria interactions.financial support from the following sources: grant SFRH/BPD/47693/2008 from the Portuguese Foundation for Science and Technology (FCT); FCT Strategic Project PEst-OE/EQB/LA0023/2013; project “BioHealth Biotechnology and Bioengineering approaches to improve health quality”, Ref. NORTE-07-0124-FEDER-000027, cofunded by the Programa Operacional Regional do Norte (ON.2−O Novo Norte), QREN, FEDER; project “Consolidating Research Expertise and Resources on Cellular and Molecular Biotechnology at CEB/IBB”, ref. FCOMP-01-0124-FEDER- 027462

    The GUINEVERE project at the VENUS facility

    No full text
    Proc. on CD Rom log315International audienceThe GUINEVERE project is an international project in the framework of IP-EUROTRANS, the FP6 program which aims at addressing the main issues for ADS development in the framework of partitioning and transmutation for nuclear waste volume and radiotoxicity reduction. The GUINEVERE project is carried out in the context of domain 2 of IP-EUROTRANS, ECATS, devoted to specific experiments for the coupling of an accelerator, a target and a subcritical core. These experiments should provide an answer to the questions of online reactivity monitoring, sub-criticality determination and operational procedures (loading, start-up, shutdown, …) in an ADS by 2009-2010. The project has the objective to couple a fast lead core, within the VENUS building operated by the SCK•CEN, with a neutron generator able to work in three different modes: pulsed, continuous and continuous with beam interruptions at the millisecond scale. In order to achieve this goal, the VENUS facility has to be adapted and a modified GENEPI-3C accelerator has to be designed and constructed. The paper describes the main modifications to the reactor core and facility and to the accelerator, which will be executed during the years 2008 and 2009, and the experimental programme which will start in 2009

    The effect of a manual instrumentation technique on five types of premolar root canal geometry assessed by microcomputed tomography and three-dimensional reconstruction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Together with diagnosis and treatment planning, a good knowledge of the root canal system and its frequent variations is a necessity for successful root canal therapy. The selection of instrumentation techniques for variants in internal anatomy of teeth has significant effects on the shaping ability and cleaning effectiveness. The aim of this study was to reveal the differences made by including variations in the internal anatomy of premolars into the study protocol for investigation of a single instrumentation technique (hand ProTaper instruments) assessed by microcomputed tomography and three-dimensional reconstruction.</p> <p>Methods</p> <p>Five single-root premolars, whose root canal systems were classified into one of five types, were scanned with micro-CT before and after preparation with a hand ProTaper instrument. Instrumentation characteristics were measured quantitatively in 3-D using a customized application framework based on MeVisLab. Numeric values were obtained for canal surface area, volume, volume changes, percentage of untouched surface, dentin wall thickness, and the thickness of dentin removed. Preparation errors were also evaluated using a color-coded reconstruction.</p> <p>Results</p> <p>Canal volumes and surface areas were increased after instrumentation. Prepared canals of all five types were straightened, with transportation toward the inner aspects of S-shaped or multiple curves. However, a ledge was formed at the apical third curve of the type II canal system and a wide range in the percentage of unchanged canal surfaces (27.4-83.0%) was recorded. The dentin walls were more than 0.3 mm thick except in a 1 mm zone from the apical surface and the hazardous area of the type II canal system after preparation with an F3 instrument.</p> <p>Conclusions</p> <p>The 3-D color-coded images showed different morphological changes in the five types of root canal systems shaped with the same hand instrumentation technique. Premolars are among the most complex teeth for root canal treatment and instrumentation techniques for the root canal systems of premolars should be selected individually depending on the 3-D canal configuration of each tooth. Further study is needed to demonstrate the differences made by including variations in the internal anatomy of teeth into the study protocol of clinical RCT for identifying the best preparation technique.</p

    Presenilin Is the Molecular Target of Acidic γ-Secretase Modulators in Living Cells

    Get PDF
    The intramembrane-cleaving protease γ-secretase catalyzes the last step in the generation of toxic amyloid-β (Aβ) peptides and is a principal therapeutic target in Alzheimer's disease. Both preclinical and clinical studies have demonstrated that inhibition of γ-secretase is associated with prohibitive side effects due to suppression of Notch processing and signaling. Potentially safer are γ-secretase modulators (GSMs), which are small molecules that selectively lower generation of the highly amyloidogenic Aβ42 peptides but spare Notch processing. GSMs with nanomolar potency and favorable pharmacological properties have been described, but the molecular mechanism of GSMs remains uncertain and both the substrate amyloid precursor protein (APP) and subunits of the γ-secretase complex have been proposed as the molecular target of GSMs. We have generated a potent photo-probe based on an acidic GSM that lowers Aβ42 generation with an IC50 of 290 nM in cellular assays. By combining in vivo photo-crosslinking with affinity purification, we demonstrated that this probe binds the N-terminal fragment of presenilin (PSEN), the catalytic subunit of the γ-secretase complex, in living cells. Labeling was not observed for APP or any of the other γ-secretase subunits. Binding was readily competed by structurally divergent acidic and non-acidic GSMs suggesting a shared mode of action. These findings indicate that potent acidic GSMs target presenilin to modulate the enzymatic activity of the γ-secretase complex
    corecore